Publications registered in MTMT



Selected publications and preprints

  1. G. Domokos, G. Horváth, Á., K. Regős “A two-vertex theorem for normal tilings“, Aequationes mathematicae (2022).
  2. S. Bozóki, G. Domokos, F. Kovács, K. Regős “Mono-unstable polyhedra with point masses have at least 8 vertices“, International Journal of Solids and Structures, 234-235, 111276 (2022).
  3. G. Pál, G. Domokos, F. Kun”Curvature flows, scaling laws and the geometry of attrition under impacts“, Scientific Reports11, 20661 (2021).
  4. Sára Lévay, David Fischer, Ralf Stannarius, Ellák Somfai, Tamás Börzsönyi, Lothar Brendel, János Török, “Interacting jammed granular systems“, Physical Review E103, 042901 (2021).
  5. Pongó, Tivadar, Viktória Stiga, János Török, Sára Lévay, Balázs Szabó, Ralf Stannarius, Raúl Cruz Hidalgo, and Tamás Börzsönyi. “Flow in an hourglass: particle friction and stiffness matter.” New Journal of Physics 23, no. 2 (2021): 023001.
  6. Madani, Mahnoush, Maniya Maleki, János Török, and M. Reza Shaebani. “Evolution of shear zones in granular packings under pressure.” Soft Matter 17, 1814-1820 (2021).
  7. Domokos, Gábor, Jerolmack, Douglas J., Kun, Ferenc, and János Török. “Plato’s cube and the natural geometry of fragmentationPNAS Jul 2020, 202001037; DOI: 10.1073/pnas.2001037117 (2020).
  8. Havasi-Tóth, Balázs. “Particle coalescing with angular momentum conservation in SPH simulations.Computers & Fluids 197 (2020): 104384.
  9. Fehér, Eszter, Balázs Havasi-Tóth, and Tamás Kalmár-Nagy. “Hysteretic behavior of spatially coupled phase-oscillators.” arXiv preprint arXiv:1901.04804 (2019).
  10. Kertész, János, Török, János, Murase, Yohsuke, Jo, Hang-Hyun, Kaski, Kimmo “Multiplex Modeling of Society” In: S., Battiston; G., Caldarelli; A., Garas (eds.) Multiplex and Multilevel Networks Oxford: Oxford University Press, (2019) 84-100. arXiv:1609.08381
  11. Murase, Yohsuke, Hang-Hyun Jo, János Török, János Kertész, and Kimmo Kaski. “Sampling networks by nodal attributes.” Physical Review E 99, no. 5 (2019): 052304.
  12. Domokos, Gábor, and Zsolt Lángi. “Plato’s Error and a Mean Field Formula for Convex Mosaics.” Axiomathes (2019): 1-17.
  13. Lángi, Zsolt “Konvex poliéderek stabil lapjai” Középiskolai Matematikai és Fizikia Lapok 69:5 (2019) 258-264.
  14. Török, János, Kertész, János “Mit tanulhatunk a big datából, avagy hogyan választunk kommunikációs csatornát?” Fizikai Szemle 69:1 (2019) 13-17.
  15. Sipos, András A. “Ooid growth: Uniqueness of time-invariant, smooth shapes in 2D.” European Journal of Applied Mathematics: 1-11.
  16. Fehér, Eszter. “Wrinkling behavior of highly stretched thin films.PhD Thesis, BME, (2018).
  17. Ausserhofer, Markus, Susanna Dann, Zsolt Lángi, and Géza Tóth. “An algorithm to find maximum area polygons circumscribed about a convex polygon.” Discrete Applied Mathematics 255 (2019): 98-108.
  18. Bezdek, Károly, and Zsolt Lángi. “Bounds for totally separable translative packings in the plane.” Discrete & Computational Geometry (2017): 1-24.
  19. Horváth, Marcell G., András Á. Sipos, and Péter L. Várkonyi. “Shape of an elastica under growth restricted by friction.” International Journal of Solids and Structures 156 (2019): 137-147.
  20. Domokos, Gábor, and Gary W. Gibbons. “The Geometry of Abrasion.” In New Trends in Intuitive Geometry, pp. 125-153. Springer, Berlin, Heidelberg, 2018.
  21. Rudas, Csilla, and János Török. “Modeling the Wikipedia to Understand the Dynamics of Long Disputes and Biased Articles.” Historical Social Research/Historische Sozialforschung 43, no. 1:163 (2018): 72-88.
  22. Jo, Hang-Hyun, Yohsuke Murase, János Török, János Kertész, and Kimmo Kaski. “Stylized facts in social networks: Community-based static modeling.” Physica A: Statistical Mechanics and its Applications 500 (2018): 23-39.
  23. Ludmány, B. and Domokos, G., 2018. “Identification of primary shape descriptors on 3D scanned particles.” Periodica Polytechnica Electrical Engineering and Computer Science62(2), pp.59-64.
  24. Börzsönyi, Tamás, Szabó, Balázs, Somfai, Ellák, Török, János, “Elnyújtott alakú részecskék rendeződése nyíró áramlásban“, Fizikai Szemle 68:4 (2018) 118-123
  25. Lángi, Zsolt. “A characterization of affinely regular polygons.” Aequationes mathematicae 92, no. 6 (2018): 1037-1049.
  26. Domokos, G. “The Gömböc Pill“, Math Intelligencer (2019). https://doi.org/10.1007/s00283-019-09891-x
  27. Bezdek, Karoly, and Zsolt Langi. Volumetric Discrete Geometry. CRC Press, 2019.
  28. Yohsuke Murase, Hang-Hyun Jo, János Török, János Kertész, Kimmo Kaski “Structural transition in social networks: The role of homophily“, Scientific reports 9, no. 1 (2019): 4310.
  29. Feher, Eszter, Timothy J. Healey, and Andras A. Sipos. “The Mullins effect in the wrinkling behavior of highly stretched thin films.” Journal of the Mechanics and Physics of Solids 119 (2018): 417-427. arXiv:1806.00060.
  30. Domokos, Gábor. “Natural Numbers, Natural Shapes” Axiomathes (2018). https://doi.org/10.1007/s10516-018-9411-5.
  31. Lángi, Zsolt. “Centering Koebe polyhedra via Möbius transformations.” arXiv preprint arXiv:1804.07572 (2018).
  32. Domokos, Gábor, Zsolt Lángi, and András A. Sipos. “Tracking critical points on evolving curves and surfaces.” Experimental Mathematics (2019): 1-20. arXiv:1802.06118.
  33. Domokos, Gábor, and Zsolt Lángi. “The isoperimetric quotient of a convex body decreases monotonically under the Eikonal abrasion model.” Mathematika 65.1 (2019): 119-129. arXiv:1801.06796.
  34. Novák-Szabó, Tímea, András Árpád Sipos, Sam Shaw, Duccio Bertoni, Alessandro Pozzebon, Edoardo Grottoli, Giovanni Sarti, Paolo Ciavola, Gábor Domokos, and Douglas J. Jerolmack. “Universal characteristics of particle shape evolution by bed-load chipping.” Science Advances 4, no. 3 (2018): eaao4946.
  35. Domokos, Gábor, and Zsolt Lángi. “The Evolution of Geological Shape Descriptors Under Distance-Driven Flows.” Mathematical Geosciences (2018): 1-27.
  36. Ludmány, Balázs, Domokos, Gábor, Szeberényi, Imre.
    “Description of surface features on 3D scanned bodies”, In Proceedings of the Workshop on the Advances of Information Technology, (2018, BMW IK, Budapest) pages 148-151
  37. Sipos, András A., Emő Márton, and László Fodor. “Reconstruction of early phase deformations by integrated magnetic and mesotectonic data evaluation.” Tectonophysics 726 (2018): 73-85. DOI: 10.1016/j.tecto.2018.01.019
  38. Sipos, András A., Gábor Domokos, and Douglas J. Jerolmack. “Shape evolution of ooids: a geometric model.” Scientific Reports 8, no. 1 (2018): 1758. DOI: 10.1038/s41598-018-19152-0
  39. Gáspár, Orsolya, András A. Sipos, and István Sajtos. “Effect of stereotomy on the lower bound value of minimum thickness of semi-circular masonry arches.” International Journal of Architectural Heritage (2018): 1-23. DOI: 10.1080/15583058.2017.1422572
  40. Lévay, Sára, David Fischer, Ralf Stannarius, Balázs Szabó, Tamás Börzsönyi, and János Török. “Frustrated packing in a granular system under geometrical confinement.” Soft Matter 18 (2018): 396-404.
  41. Domokos, Gábor, András Á. Sipos, Gyula M. Szabó, and Péter L. Várkonyi. “Explaining the elongated shape of’Oumuamua by the Eikonal abrasion model.” Research Notes of the AAS 1, no. 1 (2017): 50. arxiv.org:1712.04409.
  42. Domokos, Gábor, Zsolt Lángi, and Márk Mezei. “A shape evolution model under affine transformations. Mediterranean Journal of Mathematics 14, no. 5 (2017): 210. arXiv:1604.07630.

Earlier publications of group members

  1. McCubbin, Francis M., Jeremy W. Boyce, Tímea Novák‐Szabó, Alison R. Santos, Romain Tartèse, Nele Muttik, Gabor Domokos et al. “Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust.” Journal of Geophysical Research: Planets 121, no. 10 (2016): 2120-2149.
  2. Várkonyi, Péter L., Julie E. Laity, and Gábor Domokos. “Quantitative modeling of facet development in ventifacts by sand abrasion.” Aeolian research 20 (2016): 25-33.
  3. Domokos, Gábor, Philip Holmes, and Zsolt Lángi. “A genealogy of convex solids via local and global bifurcations of gradient vector fields.” Journal of Nonlinear Science 26, no. 6 (2016): 1789-1815, arXiv:1508.04796.
  4. Domokos, Gábor, Zsolt Lángi, and Tímea Szabó. “A topological classification of convex bodies.” Geometriae Dedicata 182, no. 1 (2016): 95-116, arXiv:1204.5494.
  5. Domokos, Gabor, Douglas J. Jerolmack, Andras Á. Sipos, and Ákos Török. “How river rocks round: resolving the shape-size paradox.” PloS One 9, no. 2 (2014): e88657.
  6. Domokos, Gábor, and Zsolt Lángi. “On the average number of normals through points of a convex body.” Studia Scientiarum Mathematicarum Hungarica 52, no. 4 (2015): 457-476. arXiv:1406.0813.
  7. Domokos, Gábor, Ferenc Kun, András Arpád Sipos, and Tímea Szabó. “Universality of fragment shapes.” Scientific reports 5 (2015): 9147.
  8. Szabó, Tímea, Gábor Domokos, John P. Grotzinger, and Douglas J. Jerolmack. “Reconstructing the transport history of pebbles on Mars.” Nature communications 6 (2015): 8366.
  9. Miller, Kimberly Litwin, Tímea Szabó, Douglas J. Jerolmack, and Gábor Domokos. “Quantifying the significance of abrasion and selective transport for downstream fluvial grain size evolution.” Journal of Geophysical Research: Earth Surface 119, no. 11 (2014): 2412-2429.
  10. Domokos, Gábor, Gary W. Gibbons, and András A. Sipos. “Circular, stationary profiles emerging in unidirectional abrasion.” Mathematical Geosciences 46, no. 4 (2014): 483-491.
  11. Domokos, Gábor, and Zsolt Lángi. “The robustness of equilibria on convex solids.” Mathematika 60, no. 1 (2014): 237-256. arXiv:1301.4031v1.
  12. Domokos, Gábor. “Monotonicity of spatial critical points evolving under curvature-driven flows.” Journal of Nonlinear Science 25, no. 2 (2015): 247-275.
  13. Domokos, G., and G. W. Gibbons. “Geometrical and physical models of abrasion.” arXiv preprint arXiv:1307.5633 (2013).
  14. Szabó, Tímea, Stephen Fityus, and Gábor Domokos. “Abrasion model of downstream changes in grain shape and size along the Williams River, Australia.” Journal of Geophysical Research: Earth Surface 118, no. 4 (2013): 2059-2071.
  15. Domokos, Gábor, Zsolt Lángi, and Tímea Szabó. “On the equilibria of finely discretized curves and surfaces.” Monatshefte für Mathematik 168, no. 3-4 (2012): 321-345.
  16. Domokos, G., and G. W. Gibbons. “The evolution of pebble size and shape in space and time.” Proc. R. Soc. A (2012): rspa20110562.
  17. Benson, Roger BJ, Gábor Domokos, Peter L. Várkonyi, and Robert R. Reisz. “Shell geometry and habitat determination in extinct and extant turtles (Reptilia: Testudinata).” Paleobiology 37, no. 4 (2011): 547-562.
  18. Várkonyi, P. L., and G. Domokos. “A general model for collision-based abrasion processes.” IMA journal of applied mathematics 76, no. 1 (2011): 47-56.
  19. Szabó, Tímea, and Gábor Domokos. “A new classification system for pebble and crystal shapes based on static equilibrium points.” Central European Geology 53, no. 1 (2010): 1-19.
  20. Domokos, Gábor, András Sipos, Tímea Szabó, and Péter Várkonyi. “Pebbles, shapes, and equilibria.” Mathematical Geosciences 42, no. 1 (2010): 29.
  21. Domokos, G., A. Á. Sipos, Gy M. Szabó, and P. L. Várkonyi. “Formation of sharp edges and planar areas of asteroids by polyhedral abrasion.” The Astrophysical Journal Letters 699, no. 1 (2009): L13. arxiv.org:0904.4423
  22. Domokos, Gábor, András Á Sipos, and Péter L. Várkonyi. n.d. “Countinuous and Discrete Models for Abrasion Processes”. Periodica Polytechnica Architecture 40 (1), (2008): 3-8.
  23. Domokos, G., A. Á. Sipos, Gy M. Szabó, and P. L. Várkonyi. “Formation of sharp edges and planar areas of asteroids by polyhedral abrasion.” The Astrophysical Journal Letters 699, no. 1 (2009): L13. arxiv.org:0904.4423
  24. Domokos, Gábor, and Péter L. Várkonyi. “Geometry and self-righting of turtles.” Proceedings of the Royal Society of London B: Biological Sciences 275, no. 1630 (2008): 11-17.
  25. Domokos, Gábor. “My lunch with Arnold.” The Mathematical Intelligencer 28, no. 4 (2006): 31-33.
  26. Várkonyi, Péter L., and Gábor Domokos. “Mono-monostatic bodies.” The Mathematical Intelligencer 28, no. 4 (2006): 34-38.
  27. Várkonyi, Péter L., and Gábor Domokos. “Static equilibria of rigid bodies: dice, pebbles, and the Poincaré-Hopf theorem.” Journal of Nonlinear Science 16, no. 3 (2006): 255-281.